Appearance-only SLAM at large scale with FAB-MAP 2.0

نویسندگان

  • Mark Joseph Cummins
  • Paul Newman
چکیده

We describe a new formulation of appearance-only SLAM suitable for very large scale place recognition. The system navigates in the space of appearance, assigning each new observation to either a new or a previously visited location, without reference to metric position. The system is demonstrated performing reliable online appearance mapping and loop-closure detection over a 1000 km trajectory, with mean filter update times of 14 ms. The scalability of the system is achieved by defining a sparse approximation to the FAB-MAP model suitable for implementation using an inverted index. Our formulation of the problem is fully probabilistic and naturally incorporates robustness against perceptual aliasing. We also demonstrate that the approach substantially outperforms the standard term-frequency inverse-document-frequency (tf-idf) ranking measure. The 1000 km data set comprising almost a terabyte of omni-directional and stereo imagery is available for use, and we hope that it will serve as a benchmark for future systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmenting RatSLAM using FAB-MAP-based Visual Data Association

This paper investigates the use of the FAB-MAP appearance-only SLAM algorithm as a method for performing visual data association for RatSLAM, a semi-metric full SLAM system. While both systems have shown the ability to map large (60-70km) outdoor locations of approximately the same scale, for either larger areas or across longer time periods both algorithms encounter difficulties with false pos...

متن کامل

Loop Closure Detection on a Suburban Road Network using a Continuous Appearance-based Trajectory

This paper presents a novel technique for performing SLAM along a continuous trajectory of appearance. Derived from components of FastSLAM and FAB-MAP, the new system dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM) augments appearancebased place recognition with particle-filter based ‘pose filtering’ within a probabilistic framework, without calculating global feature geometry or ...

متن کامل

CAT-SLAM: probabilistic localisation and mapping using a continuous appearance-based trajectory

This paper describes a new system, dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM), which augments sequential appearance-based place recognition with local metric pose filtering to improve the frequency and reliability of appearance based loop closure. As in other approaches to appearance-based mapping, loop closure is performed without calculating global feature geometry or perfo...

متن کامل

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011